$12^{1}_{8}$ - Minimal pinning sets
Pinning sets for 12^1_8
Minimal pinning semi-lattice
(y-axis: cardinality)
Pinning semi lattice for 12^1_8
Pinning data
Pinning number of this loop: 5
Total number of pinning sets: 128
of which optimal: 1
of which minimal: 1
The mean region-degree (mean-degree) of a pinning set is
on average over all pinning sets: 2.90623
on average over minimal pinning sets: 2.0
on average over optimal pinning sets: 2.0
Refined data for the minimal pinning sets
Pin label
Pin color
Regions
Cardinality
Degree sequence
Mean-degree
A (optimal)
•
{1, 2, 4, 7, 11}
5
[2, 2, 2, 2, 2]
2.00
Data for pinning sets in each cardinal
Cardinality
Optimal pinning sets
Minimal suboptimal pinning sets
Nonminimal pinning sets
Averaged mean-degree
5
1
0
0
2.0
6
0
0
7
2.38
7
0
0
21
2.65
8
0
0
35
2.86
9
0
0
35
3.02
10
0
0
21
3.14
11
0
0
7
3.25
12
0
0
1
3.33
Total
1
0
127
Other information about this loop
Properties
Region degree sequence: [2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 6, 7]
Minimal region degree: 2
Is multisimple: No
Combinatorial encoding data
Plantri embedding: [[1,2,2,3],[0,3,3,4],[0,5,6,0],[0,4,1,1],[1,3,7,7],[2,8,8,9],[2,9,9,7],[4,6,8,4],[5,7,9,5],[5,8,6,6]]
PD code (use to draw this loop with SnapPy): [[3,20,4,1],[2,9,3,10],[19,4,20,5],[1,11,2,10],[11,8,12,9],[5,16,6,17],[18,13,19,14],[7,12,8,13],[15,6,16,7],[17,15,18,14]]
Permutation representation (action on half-edges):
Vertex permutation $\sigma=$ (17,2,-18,-3)(13,4,-14,-5)(9,6,-10,-7)(20,7,-1,-8)(8,19,-9,-20)(5,10,-6,-11)(16,11,-17,-12)(12,15,-13,-16)(3,14,-4,-15)(1,18,-2,-19)
Edge permutation $\epsilon=$ (-1,1)(-2,2)(-3,3)(-4,4)(-5,5)(-6,6)(-7,7)(-8,8)(-9,9)(-10,10)(-11,11)(-12,12)(-13,13)(-14,14)(-15,15)(-16,16)(-17,17)(-18,18)(-19,19)(-20,20)
Face permutation $\varphi=(\sigma\epsilon)^{-1}=$ (-1,-19,8)(-2,17,11,-6,9,19)(-3,-15,12,-17)(-4,13,15)(-5,-11,16,-13)(-7,20,-9)(-8,-20)(-10,5,-14,3,-18,1,7)(-12,-16)(2,18)(4,14)(6,10)
Loop annotated with half-edges
12^1_8 annotated with half-edges